

SPL-TuPI: A Tool to support Product Instantiation of

Software Product Line Projects

Pablo F. Matos
1,2

, Djan A. Santos
1,2

, Crescencio R. L. Neto
1,2

, Eduardo S. Almeida
2

1
Instituto Federal de Educação, Ciência e Tecnologia da Bahia (IFBA)

Av. Amazonas 3150 – Zabelê – Vitória da Conquista – BA – Brasil

2
Universidade Federal da Bahia (UFBA)

Av. Adhemar de Barros, s/n, Campus de Ondina – Salvador – BA – Brasil

{pablofmatos, djan.santos, crescenciolima}@ifba.edu.br, esa@dcc.ufba.br

Abstract. Software product line (SPL) is a set of products developed from a

feature model satisfying the specific needs of a particular domain. The

challenge of using the feature model is to derive product variability. The Java

programming language does not natively have conditional compilation

directives like C language, requiring the use of a preprocessor to generate

product variability. So, it is not easy to create the product instantiation with

the preprocessor. To address this problem, this paper presents a tool that

implements a feature-oriented approach, called SPL-TuPI, to support product

instantiation of SPL projects. We also report an experience on using the

proposed tool with the product instantiation from a SPL application in the

event management domain.

Video link: https://youtu.be/yadPJ1E_Ymo

1. Introduction

The development of larger and more complex software systems demands better support

for reusable software artifacts [1]. Software Product Line (SPL) is an important

approach to address these demands. For this reason, SPL has been increasingly adopted

in software industry [2, 3]. SPL is a set of software systems that share a common set of

features satisfying the specific needs of a domain [1]. Besides language-based

techniques (e.g., Components and Services, Parameters, Design Patterns, Frameworks),

which encode variability with available concepts within programming languages,

external tools may be used to implement and manage variability [3].

 According to [1], the process of enabling and disabling features in a feature

model for a new software product configuration is crucial to SPL implementation. In

other words, a feature-oriented approach makes features explicit in requirements,

design, code, and testing across the entire product line life cycle [3]. Regarding the

development phase, a preprocessor is required to enable the variability implementation.

However, there are some programming languages (e.g., Java) that did not provide

conditional compilation directives.

 Moreover, during the development phase, SPL developers should map the

products and synchronize them with the features. This challenge is combined with

another demanding task, which is the variability management. Therefore, it is necessary

to have tool support to aid the developers during the product instantiation. Despite the

number of tools available [4], they still lack important tasks such as products source

code and document generation.

 In this context, this paper presents a tool, called SPL-TuPI, to support product

instantiation of SPL projects. The main goal of the tool is to allow the user to configure

a feature set dynamically to derive product variability for software product lines

application. The remainder of this paper is organized as follows: Section 2 presents an

overview of the SPL-TuPI tool; Section 3 presents a case study to evaluate the proposed

tool; Section 4 presents related work; and Section 5 concludes this work and addresses

future work.

2. SPL-TuPI Tool

This section presents the contributions that SPL-TuPI
1
 provides to support product

instantiation of SPL projects. This tool implements a feature-oriented approach to assist

users during the features configuration process, in order to make the product

instantiation simple.

Figure 1. Overview of the SPL-TuPI

 Figure 1 shows the overview of the tool that is composed by four steps:

1. Data Input (Step 1), the feature set may be automatically imported from the

XML file that is generated by the FeatureIDE tool [5]. Besides the import

functionality, the user may dynamically create and delete features by itself;

2. SPL-TuPI tool (Step 2), the user may select which features will be part of the

product instantiation. There is the possibility to define the product variability,

creating the product to be included in the product map. It is also necessary to

inform the location of the SPL application and the preprocessor. For each

software product line, the user may select the feature set and define the product

map, and he must configure the SPL application and the preprocessor;

1
 http://bsi.conquista.ifba.edu.br/~pablofmatos/tool/spl-tupi

3. Data Output (Step 3), the tool's output is a customized file named as build.xml,

which it contains the features set selected by the user only for one product

instantiation at a time, and the information of the SPL application and the

preprocessor, previously defined in Step 2; and

4. Product Instantiation (Step 4), the output file is used to instantiate the product of

an SPL application by the preprocessor, through #ifdef directives inserted in the

source code.

2.1. Data Input (Step 1)

Data input may be in two ways: (1) from the creation of the own features set by the user

with the functionalities of addition and removal of features dynamically; (2) and from

importing the XML file generated by the FeatureIDE tool [5]. FeatureIDE is an Eclipse

plug-in that supports the feature-oriented software development. The first way will be

shown in the next section (Step 2).

 As may be seen in the feature model presented in Figure 2-a), the feature may be

abstract or concrete. A feature is abstract if it is not mapped to implementation artifacts

and concrete otherwise [5]. Connections between a feature and its group of subfeatures

are distinguished as and-, or-, and alternative-groups [6]. If a feature is selected, all

mandatory subfeatures of an and-group must be selected. In or-groups, at least one

subfeature must be selected and in alternative-groups, exactly one subfeature has to be

selected [5]. The feature may also be optional or mandatory, and the selection of a

feature implies the selection of its parent feature.

Figure 2. Data input: (a) Feature Model (FM), (b) XML generated from the FM

 Figure 2-b) shows an example of the XML file generated from the feature model

by the FeatureIDE tool. The feature set is organized under the “struct” tag. This tag

allows identifying the features and subfeatures, if they are abstract or concrete, if they

are optional or mandatory, and their respective groups.

2.2. Main Functionalities (Step 2)

Figure 3 shows the SPL-TuPI tool screenshot with two tabs: The first tab deals with

feature settings (Figure 3-a) and the second one deals with build.xml settings (Figure 3-

b). The user may create the own feature set or delete the feature, respectively, by the

functionalities of addition and removal of feature (item 1). The feature set is loaded in

the TreeView component (item 2), in order to facilitate the hierarchical view and the

feature selection by the user. The user may define many product lines as he wants (item

3). Then, there are two ways to set the products: The first one (item 2) presents the

selection of features individually; the second one (item 3) presents the feature selection

based on the product map. Finally, item 4 shows the button to activate the product build,

in which it generates the XML file (i.e., build.xml) for only one product instantiation at

a time.

Figure 3. SPL-TuPI tool: (a) Features settings, (b) Build.xml settings

 Before creating the XML file indeed, it is mandatory to set the location of the

SPL application and the preprocessor (Figure 3-b). First, the folder of the SPL

application must be chosen (item 5). Since the Java programming language did not

support conditional compilation, we use the open source JavaPP [7] to perform the

source code preprocessing. The JavaPP is a Java preprocessor to automatically run

Apache Ant
2
 files. Then, it is necessary to set the JavaPP preprocessor file (item 5). The

directory that contains all Java classes and the project's main class must also be defined

(item 5). Other mandatory settings from the SPL application are: the libraries directory

used in the project (item 6), and the image directory also used in the project (item 7).

Along with the application, the user may also make available the source code. In this

case, the user must click on the checkbox “Create the Source Code” (item 7).

2.3. Data Output (Step 3) and Product Instantiation (Step 4)

Figure 4-a) shows the output file, named as build.xml, ready to be used by the SPL

application. Besides the information of the SPL application, the XML file also contains

the information of the JavaPP preprocessor, in which it will be interpreted by Apache

Ant. The JavaPP syntax is the same as the C preprocessor [8]. The goal of this file is to

2
 Apache Ant (https://ant.apache.org/manual/) is a tool for automating software build process.

(a) (b)

4

3 2

1

5

6

7

make possible the product instantiation. Figure 4-b) shows the selected features

incorporated in the SPL application through #ifdef directives inserted in source code.

Figure 4. (a) Output file, (b) SPL Application source code with #ifdef directives

2.4. Implementation

The source code was developed through the J2EE platform with the Java Swing

component and the external library, called JDOM
3
 (version 2.0.6), was used to

manipulate the XML files.

3. Case Study: e-Event SPL

We use the SPL-TuPI tool to instantiate the e-Event SPL that was implemented using

the Java language. The case study's domain chosen for the SPL project consists in the

event management domain. The e-Event SPL platform was conceived based on largely

used conference management systems, such as: EasyChair
4
, JEMS

5
, and CyberChair

6
.

 Figure 5 shows the e-Event SPL feature model which has 22 features, 3 being

abstract features (Event, Finance and Document) and 19 being concrete features (all

other features may be seen in Figure 5).

Figure 5. Feature Model from e-Event SPL

3
 http://www.jdom.org/

4
 http://www.easychair.org/

5
 https://submissoes.sbc.org.br/

6
 http://www.borbala.com/cyberchair/

 The e-Event SPL consists of three pre-configured products: basic, intermediate,

and advanced versions. In each one of them, it was defined the feature set that meet the

demands of different types of conferences. Table 1 presents the e-Event SPL product

map after the investigation of the conference management systems.

Table 1. Product Map from e-Event SPL

Feature Subfeature Basic e-Event Intermediate e-Event Advanced e-Event

Activity

Lecture No No Yes

Short Course Yes Yes Yes

Round Table No Yes Yes

Registration Participant Yes Yes Yes

Payment

In Cash Yes Yes Yes

Deposit Slip No Yes Yes

Bank Slip No No Yes

Discount
Institutional Discount No Yes Yes

SBC Member No No Yes

Certificate

Participation Yes Yes Yes

Panelist No Yes Yes

Organization No No Yes

Document
Attendance Certificate No No Yes

Attendance List No Yes Yes

3.1. Metrics Analysis

Table 2 shows the product configurations and LOC metric
7
 about the e-Event SPL, in

which the product line is organized in four categories, namely: (1) product without any

feature; (2) basic product; (3) intermediate product; and (4) advanced product,

respectively with, 8, 51, 63 and 72 Java source files. The size of the source files without

any library is, respectively, 460 KB, 690 KB, 768 KB and 811 KB. Comparing the size

of the source file from the Category 2 and Category 3 is, respectively, 34.47% and

12.25% less code than the Category 4. It shows that unselected features are indeed not

included in the product instantiation. For the record, the total Lines of Code (LOC) of

the four product line is, respectively, 1.811, 7.723, 9.503 and 10.863.

Table 2. Product Configurations and LOC metric from e-Event SPL

Category Product Line
Product Configurations

LOC
Quantity of Source Files Size without Library Size Comparison

1 Without Features 8 460 KB --------- 1.811

2 Basic 51 690 KB 230 KB (34.47%) 7.723

3 Intermediate 63 768 KB 308 KB (12.25%) 9.503

4 Advanced 72 811 KB 351 KB 10.863

3.2. Tool Instantiation

Figure 3 shows the proposed tool instantiated by the e–Event SPL. Figure 3-a) shows

the feature set loaded and the three products created. Figure 3-b) shows the settings of

the e-Event SPL application and the JavaPP preprocessor.

7
 http://www.locmetrics.com/

4. Related Work

FeatureIDE is an Eclipse-based framework to support feature oriented software

development. The tool main focus is to cover the whole development process and to

incorporate tools for the implementation of SPLs into an integrated development

environment (IDE) [5]. FeatureIDE does not address the product instantiation with a

preprocessor (#ifdef) in Java.

 Machado et al. [9] present a tool, called SPLConfig, to support automatic

product configuration in SPL which the main goal is to derive an optimized features set

that satisfies the customer requirements, in order to maximize the benefit/cost without

exceeding the available budget. The tool focuses only on the product configuration and

does not focus on the product instantiation.

 The GenArch [10] and its evolution GenArch+ [11], presented a model-based

product derivation tool that combines the use of models and code annotations in order to

enable the automatic product derivation of existing SPLs. However, these tools also do

not address the product instantiation with preprocessor (#ifdef) in Java.

 Recently, [4] presented a systematic literature review on SPL management tools.

The study identified thirty-three tools that support the product derivation functionality.

5. Conclusion and Future Work

This paper presented the SPL-TuPI, a Java tool built to assist users during the feature

configuration process in order to make the product instantiation simple. This tool

implements a feature-oriented approach, in which it generates the product variability

based on a XML file easily defined by the user. We also report an experience on using

the proposed tool with the product instantiation from an SPL application in the event

management domain, called e-Event SPL. The difficulty faced in the development of

this SPL has been to find a Java plugin for the #ifdef directives preprocessing, in order

to select the feature set and to instantiate the product line. The JavaPP preprocessor [7]

has solved the lack of this plugin. On the other hand, the SPL-TuPI tool made possible

to define the feature set and to instantiate the product line in an easy way, using the

JavaPP preprocessor.

 As future work, we intend to implement the validation of the constraints and the

dependencies among features during the feature selection process, following also the

XML standard from the FeatureIDE tool [5]. These restrictions will avoid the selection

of invalid combinations.

References

1. Pohl, K., Böckle, G. and van der Linden, F.J. (2005) Software Product Line

Engineering: Foundations, Principles and Techniques. Springer, NY.

2. Linden, F.v.d., Schmid, K. and Rommers, E. (2007) Software Product Lines in

Action: The Best Industrial Practice in Product Line Engineering. Springer, NY.

3. Apel, S. et al. (2013) Feature-Oriented Software Product Lines: Concepts and

Implementation. Springer, Berlin/Heidelberg.

4. Pereira, J., Constantino, K. and Figueiredo, E. (2014) A Systematic Literature Review

of Software Product Line Management Tools. In Schaefer, I. and Stamelos, I.

(eds), Software Reuse for Dynamic Systems in the Cloud and Beyond.

Lecture Notes in Computer Science, Springer International Publishing, pages

73-89.

5. Thüm, T. et al. (2014). FeatureIDE: An extensible framework for feature-oriented

software development. Science of Computer Programming, 79, 70-85.

6. Batory, D. (2005) Feature models, grammars, and propositional formulas. In Proc. of

the 9th international conference on Software Product Lines. pp. 7-20.

7. Kropf, J. (2010) Java Preprocessor for Apache Ant, http://git.slashdev.ca/javapp.

8. Spencer, H. and Collyer, G. (1992) #ifdef Considered Harmful, or Portability

Experience With C News. Technical Report, University of Toronto, San

Antonio, TX.

9. Machado, L. et al. (2014) SPLConfig: Product Configuration in Software Product

Line. In Brazilian Conference on Software: Theory and Practice - Tools

Session. pp. 85-92.

10. Cirilo, E., Kulesza, U. and Lucena, C.J.P. (2007) GenArch – A Model-Based

Product Derivation Tool. In SBCARS. pp. 31-44.

11. Cirilo, E. et al. (2011) GenArch+: an extensible infrastructure for building

framework-based software product lines. In: Proceedings of the tenth

international conference on Aspect-oriented software development
companion, pages 69-70. ACM.

http://git.slashdev.ca/javapp

	1. Introduction
	2. SPL-TuPI Tool
	2.1. Data Input (Step 1)
	2.2. Main Functionalities (Step 2)
	2.3. Data Output (Step 3) and Product Instantiation (Step 4)
	2.4. Implementation

	3. Case Study: e-Event SPL
	3.1. Metrics Analysis
	3.2. Tool Instantiation

	4. Related Work
	5. Conclusion and Future Work
	References

